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Abstract. Making use of the Zubarev correlation functions, we calculate and discuss the
quantized conductance for a Tomonaga–Luttinger (TL) liquid coupled to phonons in a dirty
quantum wire. In this system, the electron–phonon (e–p) coupling increases the conductance,
while the impurities in the quantum wire reduce the conductance. The quantum wire length
satisfies a certain condition, which determines whether e–p scattering will dominate over impurity
scattering. However, the conductance is destroyed under certain conditions: namely, there is a
size effect.

1. Introduction

In recent years, great progress has been made in the study of quantum transport in all
kinds of mesoscopic systems. One of the most remarkable phenomena is the quantized
conductance in a point contact. The most important research in conductance theory is to
calculate the quantized conductance and the conductance fluctuations.

The quantized conductance0 is observed in a channel quantum point contact which
is equivalent to a very short quantum wire of less than 0.2 µm [1]. Twenty years ago,
Landauer [2] proposed that the dc conductance of noninteracting (spinless) electrons in a
disordered medium in strictly one dimension is given by0 = (e2/2πh̄)|t |2/|r|2, wheret and
r are the transmission and reflection amplitudes. In one-dimensional electronic systems, the
mutual interaction between electrons plays a most important role which leads to Luttinger-
liquid behaviour [3]. But in the theory of Landauer, the mutual interaction has been largely
ignored. At low temperatures, it was argued that the Coulomb interaction causes deviations
of the conductance0 from 2e2/h in a channel quantum wire. Some authors [4] calculated
the conductance under the influence of interacting electrons. But experiments [5, 6] showed
that the usual reduction0 due to electron–electron interactions is not observed in realistic
wires which are always coupled to leads where the interaction is screened. In a recent
article [7], some authors showed that the conductivity had to be understood as the current
response to the macroscopic electronic field and not to the external field, which was pointed
out by Izuyama more than 30 years ago shortly after Kubo had presented his theory of
linear response. So the Coulomb interaction has no effect on the conductivity and hence
the conductance itself. In this paper, the results of our calculations support this.

Some effort has been devoted to investigating the possibility that e–p interactions may
be a candidate for10. It was demonstrated [7] that the e–p coupling causes the conductance
0 to increase. However, in a realistic quantum wire, it is also necessary to consider the
influence of impurities on the conductance properties. Impurities can alter the optical and
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electrical properties. In a TL liquid [8, 9], the quantized conductance may be destroyed.
To our knowledge, there have to date been no calculations of the conductance with the e–p
mechanism in a dirty quantum wire. Even in investigations which considered the influence
of impurities only, mostly numerical computations are used and it is difficult to obtain an
analytical result. In this paper, we try to give an analytical result for the conductance in a
dirty quantum wire with the e–p mechanism.

2. Theoretical model

In this paper we consider a narrow quantum wire with lengthLs and width W , and
with impurities randomly distributed along the wire. We know that Anderson localization
becomes important for samples with short mean free paths and at low temperatures. Here
we investigate wires which are relatively cleaner with mean free paths long enough so that
the localization effect is of minor importance. We also assume that the carrier density
andW are such that there exists only a single subband along the wire. In our model, the
Hamiltonian is

H = H0+He−e +Hp +He−p +Himp
H0 =

∑
α

εαC
+
α Cα

He−e = 1
2

∑
λ

ν(λ)ρλρ−λ

Hp =
∑
Q

ωQa
+
QaQ (1)

He−p =
∑
αβQ

M
Q
αβC

+
α Cα(aQ + a+−Q)

Himp =
∑
λ

u(λ)
∑
τ

C+λ+τCτ

whereεα is the kinetic energy of electrons with effective massm∗ andωQ is the phonon
frequency. aQ (a+Q) is the creation (annihilation) operator of phonons,Cα (C+α ) is the

creation (annihilation) operator of electrons andMQ
αβ is the e–p coupling matrix element.

ν(λ) andu(λ) are the one-dimensional Fourier transforms of the Coulomb interaction and
the random impurity potential, respectively. The density operator of electronsρλ is defined
asρλ =

∑
τ C
+
τ Cτ−λ.

The conductance can be obtained from the density–density correlation function

χ(q, ω) = i
∫ ∞

0
dteiωt 〈[ρ ′q(t), ρ ′−q(0)]〉0 (2)

where ρ ′q = (1/
√
Ls)

∑
kσ C

+
kσCk−qσ with k referring to the plane wave vector in the

x direction. The relation of the conductivityσ(q, ω) to χ(q, ω) is given through charge
and current conservation,

σ(q, ω) = −ie2(ω/q2)χ(q, ω) (3)

with

χ(q, ω) = − 1

Ls

∑
kk′

∑
σσ ′
〈〈C+kσCk−qσ | C+kσCk−qσ 〉〉ω. (4)
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The conductance0(ω) is defined as the spatial average of the conductivity in real space
over an interval of lengthL,

0(ω) = 〈σ(q, ω)〉L
〈A〉L = 1

L2

∫ L/2

−L/2

∫ L/2

−L/2
dx dx ′

∫ ∞
−∞

dq

2π
eiq(x−x ′)A(q) (5)

with the notation〈A〉L for a functionA(q). The Zubarev correlation function in (4) is
defined as [10]

〈〈A | B〉〉ω = −i
∫ ∞

0
dteiωt 〈[A(t), B(0)]〉0 (6)

where the expectation value〈〉0 refers to the equilibrium density operator exp(−βH)/Z, β
is the inverse temperature andZ = Tr exp(−βH). The correlation function can be obtained
from the equations of motion of the Green functions inω space.

ω〈〈A | B〉〉ω = 〈[A,B]〉0+ 〈〈[A,H ] | B〉〉ω
ω〈〈A | B〉〉ω = 〈[A,B]〉0− 〈〈A | [B,H ]〉〉ω. (7)

In the process of calculation, we make an approximation to cut off high-order Green
functions. We also consider weak coupling and scattering and take the scattering of phonons
and impurities to second order. The resulting analytic expressions are as follows:

〈〈C+α Cβ | C+γ Cδ〉〉ω=
fα − fβ
ωαβ

δαδδβγ+ fα − fβ
ωαβ

fδ − fγ
ωδγ

∑
Q

M
Q
βαM

Q
δγ

(
1

ω − ωQ−
1

ω + ωQ

)
+ 1

ωαβ

fδ − fγ
ωδγ

[u(β − γ )δαδ − u(δ − α)δβγ ]

− 1

ωαβ

fδ − fγ
ωδγ

u(β − γ )u(δ − α)
(

1

ωαγ
− 1

ωδβ

)
+ 1

ωαβ

fδ − fγ
ωδγ

∑
λ

u(λ)

[
u(β − γ − λ)

ωαβ−λ
δαδ − u(δ − α − λ)

ωα+λβ
δβγ

]
−fα − fβ

ωαβ

1

ωδγ

∑
Q

∑
λ

u(λ)M
Q
βαM

−Q
δγ+λ

(
fδ−λ − fγ
ωδ−λγ

− fδ − fγ+λ
ωδγ+λ

)
×
(

1

ω − ωQ −
1

ω + ωQ

)
+ 1

ωαβ

fδ − fγ
ωδγ

∑
Q

∑
λ

u(λ)M
Q
βα+λM

−Q
δγ

×
(
fα − fβ−λ
ωαβ−λ

− fα+λ − fβ
ωα+λβ

)(
1

ω − ωQ −
1

ω + ωQ

)
. (8)

In the expression for (8), we useωQ = ω−Q, v(q) = v(−q) and the fact that the momentum
matrix elementMQ

kk′ depends onk andk′ only through the differencek-k′ for plane waves.
Here, we introduce the abbreviationωαβ = ω+ εα − εβ andfα = {exp[β(εα − µ)+ 1]}−1,
whereµ denotes the chemical potential of the Fermi distributionf . In the process of
calculation of the electronic Zubarev correlation function〈〈C+α Cβ | C+γ Cδ〉〉ω, only the Fermi
distributionf occurs. This is consistent with [7]. Making use of (2), (4) and (8), one obtains
the concrete expression for the density–density correlation function

χ(q, ω) = χ0(q, ω)− [χ0(q, ω)]
2πvF

2
γq(ω)+ χ1(q, ω)+ χ2(q, ω)− χ0(q, ω)κq(ω) (9)
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where

χ0(q, ω) = − 1

Ls

∑
kσ

fk − fk−q
ω + 2kq − q2

(10)

γq(ω) = 2Ls
πh̄2vF

∑
Q

|MQ
kk+q |2

2ωq
ω2− ω2

Q

. (11)

In (9), χ1(q, ω) and χ2(q, ω) are the contributions of the impurities, andκq(ω) is a
common interaction term for impurities and phonons. The concrete forms of these terms are
determined by (2), (4) and (8). In (11), the expressionγq(ω) contains the phonon propagator
∼1/(ω2− ω2

Q) but no distribution functions and thus is temperature independent [7].

3. Discussion

In this section, we calculate and discuss in some detail the conductance atT = 0 and in
the long-wave limit (q → 0) and for the static state (ω → 0). There are four parts below
which consider various possible situations.

(a) When e–p interactions are not considered (matrix elementM equals zero) and in the
absence of impurities (Fourier translationu(λ) equals zero), the density–density correlation
function is

χ0(q, ω) = −2vF q2

π

1

ω2− v2
F q

2
q → 0 kBT � µ. (12)

One obtains the conductance

00(ω) = 2e2

h

(
1+ iωL

3vF
+ 0(ω2)

)
(13)

which is the well known result for the conductance of a ballistic one-dimensional channel
[2, 7].

(b) When there are no impurities, using the notation

γ0 = −γq=0(ω = 0) = 2Ls
πh̄2vF

∑
Q

|MQ
kk|2

2

ωQ
(14)

one obtains for the conductance

0(ω) = 00(ω)(1+ 1
2γ0). (15)

Here, for weak e–p coupling (γ0� 1), our calculation is approximately consistent with the
result [7]0(ω→ 0) = (2e2/h)(1−γ0)

−1/2. Moreover, for a realistic wire,γ0 is larger than
zero. Thus atT = 0, the e–p coupling leads to an effectively attractive interaction between
the electrons which increases the conductance.

(c) When the e–p scattering is weak enough to be neglected, and considering electron–
impurity scattering, we obtain

0(ω→ 0) = 00(1− 1
2γ1) (16a)

where

00 = 2e2/h γ1 = 8πu2(2kF )+ Lsv2
Fu

2(0)

12πv4
F

. (16b)

Here, vF is Fermi velocity. We know from (16) that the scattering terms of moment
2kF have important contributions to the conductance and the scattering of impurities to
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electrons makes the conductance decrease. The discussion above is consistent with [8].
But, making use of the Zubarev method, we only discuss the situations atT = 0 and in the
thermodynamic limit, while [8] was based on the Mori formula and discussed at definite
temperature. Whenγ1 � 2, that is, the length of quantum wire satisfiesLs � L0, where
L0 = 4πv−1

F (6v
4
F − 2u2(2kF ))u−2(0), the quantized conductance can be maintained. This

can be realized when the lengthLs is short enough andvF satisfiesvF ∼ (1/3u2(2kF ))1/4.
In contrast, whenγ1 → 2, that isLs → L0, the quantized conductance is destroyed by
being suppressed.

(d) When we have both impurities and e–p scattering in a quantum wire, the conductance
is

0(ω→ 0) = 00[1+ 1
2(γ0− γ ′0)] (17)

where

γ ′0 = γ1+ γ2

γ2 = 4vFLs
π2

∑
Q

IQ

ωQ
M
Q

00

IQ =
∑

λ(6=0,±kF ,±2kF )

u(λ)

λ(λ+ 2kF )
ln

∣∣∣∣ (λ+ kF )(λ− 2kF )2

(λ− kF )(λ+ 2kF )2

∣∣∣∣(M−Q0λ −MQ

0λ). (18)

We see from (17) that whenγ0 > γ ′0, that is,Ls > L1, where

L1 = 8π2h̄2u2(2kF )

48πv3
F

∑
Q |MQ

kk|2 1
ωQ
− 48v5

F h̄
2∑

Q

IQ
ωQ
M
Q

00− πvFh̄2u2(0)
(19)

the common interactions between phonons and impurities will make the conductance
increase. e–p scattering is dominant, which results in an effectively attractive interaction
between electrons. On the other hand, forγ0 < γ ′0, that is,Ls < L1, the common interaction
will make the conductance decrease. Thus, the dominance of electron–impurity scattering
leads to impulsive interactions between electrons. Under the conditionγ0 − γ ′0 � 2, we
obtainLs � L2, where

L2 = 8π2h̄2[u2(2kF )+ 3v4
F ]

48πv3
F

∑
Q |MQ

kk|2 1
ωQ
− 48v5

F h̄
2∑

Q

IQ
ωQ
M
Q

00− πvFh̄2u2(0)
. (20)

Then the quantized conductance can be maintained with only slight deviations. On the
other hand, forγ0− γ ′0→ 2, that isLs → L2, the common interaction of the phonons and
impurities will make the quantized conductance disappear.

4. Conclusion

In summary, we have discussed the TL liquid in a quantum wire. Considering the
influence of both phonons and impurities, we obtained the expression for the density–
density correlation function making use of the equations of motion for the Green functions.
From this, we obtained an expression for the conductance and discussed it under four
situations. We found that the e–p coupling increases the conductance, while impurity
scattering decreases the conductance. When there exist impurities in the quantum wire and
we consider also the e–p coupling, there will be a critical valueL1 that has the dimensions
of length. WhenLs > L1, e–p scattering will be dominant, while forLs < L1, electron–
impurity scattering will have the chief effect, which makes the conductance decrease.
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Furthermore, we also gave the condition under which the conductance can be maintained
or destroyed.
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